Phép đối xứng trục – Bài tập Hình Học lớp 11

Loading...
()

Đang tải…

Trong mặt phẳng cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành điểm M’ sao cho d là đường trung trực của đoạn thẳng MM’ được gọi là phép đối xứng qua đường thẳng d hay phép đối xứng trục d (h.1.5).

Phép đối xứng trục bài tập hình học lớp 11

Phép đối xứng qua trục d thường được kí hiệu là D_d. Như vậy M’ = D_d(M)

overrightarrow{M_oM'} = overrightarrow{-M_oM}, với M_o là hình chiếu vuông góc của M trên d.

Đường thẳng d đượe gọi là trục đối xứng của hình H nếu D_d biến H thành chính nó. Khi đó H được gọi là hình có trục đối xứng.

Trong mặt phẳng toạ độ Oxy, cho đường thẳng d. Vói mỗi điểm M = (x ; ỵ), gọi M’ = D_d(M) = (x’; y’).

Phép đối xứng trục

1) Bảo toàn khoảng cách giữa hai điểm bất kì;

2) Biến một đường thẳng thành đường thẳng ;

3) Biến một đoạn thẳng thành đoạn thẳng bằng đoạn thẳng đã cho ;

4) Biến một tam giác thành tam giác bằng tam giác đã cho ;

5) Biến một đường tròn thành đường tròn có cùng bán kính.

Xác định ảnh của một hình qua một phép đối xứng trục

1. Phương pháp giải

Để xác định ảnh H’ của hình H qua phép đối xứng qua đường thẳng d ta có thể dùng các phương pháp sau :

  • Dùng định nghĩa của phép đối xứng trục ;
  • Dùng biểu thức vectơ của phép đối xứng trục;

Phép đối xứng trục bài tập hình học lớp 11

  • Dùng biểu thức toạ độ của phép đối xứng qua các trục toạ độ.

Ví dụ 1. Cho tứ giác ABCD. Hai đường thẳng AC và BD cắt nhau tại E. Xác định ảnh của tam giác ABE qua phép đối xứng qua đường thẳng CD.

Giải

Chỉ cần xác định ảnh của các đỉnh của tam giác A, B, E qua phép đốị xứng đó. Ảnh phải tìm là tam giác A’B’E.

Ví dụ 2. Trong mặt phẳng Oxy, cho điểm M( 1 ; 5), đường thẳng d có phương trình x – 2y + 4 = 0 và đường tròn (C) có phương trình :

x^2 + y^2 - 2x + 4y - 4 = 0

a) Tìm ảnh của M, d và (C) qua phép đối xứng qua trục Ox

b) Tìm ảnh của M quạ phép đối xứng qua đường thẳng

Giải

a) Gọi M’, d’ và (C’) theo thứ tự là ảnh của M, d và (C) qua phép đối xứng trục Ox. Khi đó M’ = -(1 ;-5).

Xem thêm  Hướng dẫn đọc hiểu Khái Quát Văn Học Việt Nam Từ Đầu Thế Kỉ XX Đến Cách Mạng Tháng 8 Năm 1945

Để tìm d’ ta sử dụng biểu thức toạ độ của phép đối xứng trục Ox : Gọi điểm N'(x’; ỵ) là ảnh của điểm N(x ; y) qua phép đối xứng trục Ox.

Ta có N ∈ d ⇔ x – 2y + 4 = 0 ⇔ x’ – 2(-y’) + 4 = 0 ⇔ x’ + 2y’ + 4 = 0

  ⇔ N’ thuộc đường thẳng d’ có phương trình x + 2ỵ + 4 = 0.

Vậy ảnh của d là đường thẳng d’ có phương trình x + 2ỵ + 4 = 0.

Để tìm (C’), trước hết ta để ý rằng (C) là đường tròn tâm I = (1 ; -2), bán kính R = 3. Gọi J’ là ảnh của J qua phép đối xứng trục Ox. Khi đó J’ = (1 ; 2). Do đó (C’) là đường tròn tâm J’ bán kính bằng 3. Từ đó suy ra (C’) có phương trình (x - 1)^2 + (y - 2)^2 = 9.

b) Đường thẳng d_1 qua M vuông góc với d có phương trình

Giao của d và d_1 là điểm M_o có toạ độ thoả mãn hệ phương trình

Vậy M_o = (2 ; 3). Từ đó suy ra ảnh của M qua phép đối xứng qua đường thẳng d là M” sao cho M_o là trung điểm của MM”, do đó M” = (3 ; 1).

Phép đối xứng trục bài tập hình học lớp 11

Tìm trục đối xứng của một đa giác

1. Phương pháp giải

Sử dụng tính chất: Nếu một đa giác có trục đối xứng d thì qua phép đối xứng trục d mỗi đỉnh của nó phải biến thành một đỉnh của đa giác, mỗi cạnh của nó phải biến thành một cạnh của đa giác bằng cạnh ấy.

2. Ví dụ

Ví dụ. Um các trục đối xứng của một hình chữ nhật.

Giải

Cho hình chữ nhật ABCD, AB > BC. Gọi F là phép đối xứng qua trục d biến ABCD thành chính nó. Khi đó cạnh AB chỉ có thể biến thành chính nó hoặc biến thành cạnh CD.

Nếu AB biến thành chính nó thì chỉ có thể xảy ra F(A) = B (vì nếu F(A) = A thì F(B) = B suy ra d trùng với đường thẳng AB, điều này vô lí). Khi đó d là đường trung trực của AB.

Nếu AB biến thành CD, thì không thể xảy ra F(A) = C, F(B) = D. Vì nếu thế thì AC // BD, (cùng vuông góc với d) điều đó vô lí. Vậy chỉ có thể F(A) = D, F(B) = c. Khi đó d là đường trung trực của AD.

Xem thêm  Looking Back + Project – trang 28 Unit 2 Relationships? Sách Giáo Khoa Tiếng Anh 11 mới
Loading...

Vậy hình chữ nhật ABCD có hai trục đối xứng là các đường trung trực của AB và AD.

Vấn đề 3

Dùng phép đối xứng trục để giải một số bài toán dựng hình

1. Phương pháp giải

Để dựng một điểm M ta tìm cách xác định nó như là ảnh của một điểm đã biết qua một phép đối xứng trục, hoặc xem điểm M như là giao của một đường cố định với ảnh của một đường đã biết qua một phép đối xứng trục.

2. Ví dụ

Ví dụ. Cho hai đường tròn (C), (C’) có bán kính khác nhau và đường thẳng d. Hãy dựng hình vuông ABCD có hai đỉnh A, C lần lượt nằm trên (C), (C’) còn hai đỉnh kia nằm trên d.

Giải

Phân tíchPhép đối xứng trục bài tập hình học lớp 11

Giả sử hình vuông đã dựng được. Ta thấy hai đỉnh B và D của hình vuông ABCD luôn thuộc d nên hình vuông hoàn toàn xác định khi biết đỉnh C.

Xem C là ảnh của A qua phép đối xứng qua trục d. Vì A thuộc đường tròn (C) nẽn c thuộc đường tròn (C_1) là ảnh của

(C) qua phép đối xứng qua trục d. Mặt khác C luôn thuộc đường tròn (C’). Vậy c phải là giao của đường tròn (C_1) với

đường tròn (C’)

Từ đó suy ra cách dựng.

Cách dựng

a) Dựng đường tròn (C_1) là ảnh của (C) qua phép đối xứng qua trục

b) Từ c thuộc (C_1) ∩ (C’) dựng điểm A đối xứng với c qua Gọi I là giao của AC với d.

c) Lấy trên d hai điểm B và D sao cho I là trung điểm của BD và IB = ID = IA. Khi đó hình vuông ABCD là hình cần dựng.

Chứng minh

Dễ thấy ABCD là hình vuông có B và D thuộc d, C thuộc (C’). Ta chỉ cần chứng minh A thuộc (C). Thật vậy vì A đối xứng với C qua d, mà c thuộc (C’) nên A phải thuộc (C) là ảnh của (C’) qua phép đối xứng qua trục d.

Biện luận

Bài toán có một, hai, hay vô nghiệm tuỳ theo số giao điểm của (C_1) với (C’)

Vấn đề 4

Dùng phép đổi xứng trục để giải một số bài toán tìm tập hợp điểm

Chứng minh tập hợp điểm phải tìm là ảnh của một hình đã biết qua một phép đối xứng trục.

Ví dụ. Cho hai điểm phân biệt B và C cố định trên đường tròn (O) tâm o, điểm A di động trên đường tròn (O). Chứng minh rằng khi A di động trên đường tròn (O) thì trực tâm của tam giác ABC di động trên một đường tròn.

Xem thêm  Chương I – Bài Tập Cuối Chương I – trang 15 – Sách bài tập vật lý 11

GIẢIPhép đối xứng trục bài tập hình học lớp 11

Gọi I, H’ theo thứ tự là giao của tia AH với BC và đường tròn (O). Ta có

widehat{BAH} = widehat{HCB} (tương ứng vuông góc)

widehat{BAH} = widehat{BCH'} (cùng chắn một cung).

Vậy tam giác CHH’ cân tại C, suy ra H và H’ đối xứng với nhau qua đường thẳng BC.

Khi A chạy trên đường tròn (O) thì H’ cũng chạy trên đường tròn (O). Do đó H phải chạy trên đường tròn (O’) là ảnh của (O) qua phép đối xứng qua đường thẳng BC.

 

 

1.6. Trong mặt phẳng toạ độ Oxy, cho điểm M(3 ; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình : x^2 + y^2 - 2x + 4y - 4 = 0. Tìm ảnh của M, d và (C) qua phép đối xứng qua trục Ox.

1.7. Trong mặt phẳng Oxy cho đường thẳng d có phương trình x – 5ỵ + 7 = 0 và đường thẳng d’ có phương trình 5x – y – 13 = 0. Tìm phép đối xứng trục biến d thành d’.

1.8. Tìm các trục đối xứng của hình vuông.

1.9. Cho hai đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm c trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy (không cần biện luận).

1.10. Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.

Thấy bài viết hay hãy đánh giá làm động lực cho chúng tôi bạn nhé

Chọn số sao muốn đánh giá

Xếp hạng trung bình / 5. Số lượng đánh giá:

Chưa có đánh giá nào cho bài viết. Bạn hãy đánh giá để làm người đánh giá đầu tiên cho bài viết này

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *